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Abstract

Vegetation patterns arise from the interplay between intraspecific and interspecific bi-
otic interactions and from different abiotic constraints and interacting driving forces and
distributions. In this study, we constructed an ensemble learning model that, based
on spatially distributed environmental variables, could model vegetation patterns at the
local scale. The study site was an alluvial floodplain with marked hydrologic gradients
on which different vegetation types developed. The model was evaluated on accuracy,
and could be concluded to perform well. However, model accuracy was remarkably
lower for boundary areas between two distinct vegetation types. Subsequent applica-
tion of the model on a spatially independent data set showed a poor performance that
could be linked with the niche concept to conclude that an empirical distribution model,
which has been constructed on local observations, is incapable to be applied beyond
these boundaries.

1 Introduction

Ecosystems are complex, evolving structures whose characteristics and dynamic prop-
erties depend on many interrelated links between direct gradients (nutrients, moisture,
temperature), their environmental determinants (climate, geology, topography) and po-
tential natural vegetation, and the processes that mediate between the potential and
actual vegetation cover (Baird and Wilby, 1999). Riparian wetlands in particular exhibit
a complex interplay between meteorological, hydrological and biological processes and
interactions with the surrounding terrestrial and aquatic systems resulting in a high
spatial and short-term variability (Dall’O’ et al., 2001). The conceptual representa-
tion shown in Fig. 1 illustrates the linkages between hydrology, the physicochemical
environment and vegetation at the local scale. The direct effect of site hydrology on
physicochemical site properties, such as soil moisture content, oxygen and nutrient
availability determines the productivity and species composition of the site (Venterink
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et al., 2001; Wassen et al., 2003). Vegetation, however, is not passive to the abioti-
cal setting, but affects site hydrology and physicochemical properties through feedback
processes of which transpiration (Engel et al., 2005), soil aeration (Mainiero and Kazda,
2005) and alterations in nutrient loadings (Hill, 1996; Fisher and Acreman, 2004) are
just some examples. These localized direct and feedback processes result in spatial
and temporal distributions of the abiotical constraints at a higher scale level (Schroder,
2006). Together with intraspecific, interspecific and anthropogenic interactions these
distributed abiotical constraints result in vegetation patterns.

Exploring vegetation patterns is a central goal in ecology. Numerous studies ex-
amined environmental gradients in relation to vegetation type distributions in vari-
ous ecosystems (Schulze et al., 1996; Famiglietti et al., 1998; Molina et al., 2004;
Rudner, 2005), and different techniques have been developed to quantify vegetation-
environment relationships. Canonical ordination (Jongman et al., 1995) for example,
is widely applied in ecological studies to detect patterns of variation in vegetation data
and quantify the main relations between vegetation and environmental variables. Gen-
eralized linear models (e.g. multiple logistic regression (Hosmer and Lemeshow, 2000))
are frequently applied to construct distribution models (Austin, 2002; Bio et al., 2002,
among others). Distribution models tend to predict spatial distributions of species
based on environmental variables (Guisan and Zimmerman, 2000; Guisan and Thuiller,
2005). In this study, an ensemble learning technique named random forests (Breiman,
2001), is applied to a spatially distributed data set containing information on environ-
mental conditions and vegetation type distributions. The random forest distribution
model was assessed in terms of: (i) its classification accuracy, (ii) its applicability on a
similar alluvial floodplain, and (iii) its potential to model vegetation distributions based
on a reduced number of important environmental variables in groundwater-dependent
ecosystems.

3689

HESSD
4, 3687-3717, 2007

Modelling
groundwater-
dependent vegetation
patterns

J. Peters et al.

it

EG

(@


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3687/2007/hessd-4-3687-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3687/2007/hessd-4-3687-2007-discussion.html
http://www.egu.eu

10

15

20

25

2 Description of the study site

A lowland river valley in Belgium called “Doode Bemde” was the research area of this
study (Fig. 2). The site is an alluvial floodplain mire in the middle course of the river
Dijle, situated approximately 30 m above sea level. The area is bordered by the river
Dijle in the west, the Molenbeek, a tributary of the Dijle, in the north and the valley
slope with a number of permanent springs in the east (De Becker et al., 1999). The
climatic conditions at the site are typically temperate, with an average yearly rainfall of
~800 mm distributed evenly over the year (Verhoest et al., 1997; De Jongh et al., 2006),
an average annual pan evaporation of 450 mm, and an average yearly air temperature
of 9.8°C (Van Herpe and Troch, 2000). Local conditions at the Doode Bemde have
been extensively described by De Becker et al. (1999), De Becker and Huybrechts
(2000), Bio et al. (2002) and Joris and Feyen (2003).

2.1 Ecohydrological monitoring scheme

During the summer of 1993 and the spring of 1994, plant species occurrences were
mapped in the study area. Therefore, the total area of 21.08 ha was subdivided in 519
regular and adjacent 20m by 20m grid cells. Mapping was restricted to a selection
of 56 plant species of which 45 were typically groundwater dependent (phreatophytes,
sensu Londo (1988)) and 11 were differential species for several vegetation types at
the Doode Bemde. Based on these species cover data, De Becker et al. (1999) applied
TWINSPAN (Hill, 1979) in order to define vegetation types. Seven different types were
distinguished (Table 1), and their spatial distribution can be seen in Fig. 2. The similarity
in species composition between grid cells was compared using the Jaccard index of
similarity JS=c/(a+b+c) where c is the number of species shared by both cells, and
a and b are the numbers of species unique to each of the cells (Jaccard, 1912). The
Jaccard similarity of two grid cells expresses their ecological resemblance concerning
species composition, and ranges between 0 (when both cells have unique species) and
1 (when both cells have equal species composition). Averaged JS values are given in
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Table 2 for the seven different vegetation types. The values of the diagonal elements
in Table 2 are a measure of similarity between grid cells of the same vegetation type.
Based on these values, patches of Phragmitetalia, Magnocaricion with Phragmites and
Magnocaricion can be concluded to be more homogeneous in species composition
compared to the other vegetation types which have lower values. Between the different
vegetation types, marked differences in similarity can be observed. Magnocaricion with
Phragmites has high similarities with Phragmitetalia and Magnocaricion. Between the
other vegetation types, similarities are generally lower, but nevertheless differences
can be observed. Arrhenatherion for example, has twice as much species in common
with Filipendulion than with Magnocaricion.

A groundwater monitoring network consisting of 25 piezometers was installed in
1989. Groundwater depths were measured every fortnight during the period 1 Jan-
uary 1993-31 December 1993. Time series of linear interpolated groundwater depths
measured at several piezometers (A—E, locations can be seen in Fig. 2) along a to-
pographical transect are plotted in Fig. 3a. A yearly pattern of high summer depths
and low winter depths was observed at all piezometers. Yearly averaged groundwater
depths differed considerably along the transect. At the levee near the river an average
value of 1.27 m was measured, which decreased gradually moving further down toward
the depression, with a minimal yearly average groundwater depth of 0.05 m measured
at piezometer D in the center of the depression (Fig. 3b). Figure 3b also shows differ-
ent periods of superficial groundwater depths (<0.3 m) in all piezometers, ranging from
75% of the year in piezometer C to 35% of the year in piezometers B and D. Ground-
water depths measured in piezometer A are never <0.3 m. Additional to the monitoring
of groundwater dynamics, all 25 piezometers were sampled on several groundwater
quality variables during a sampling campaign in September 1993 with respect to pH,
CI™, Ca®", Fey, K*, Mg®*, NO;-N, NH;-N, H,PO; and SO;™. Al values are in [mg
L’1] except for pH [-]. A soil type map was made based on 60 drillings to a depth
of 1 m, evenly distributed over the study area. Management regime was assessed for
each grid cell separately. Four different regimes could be distinguished:
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— Yearly mowing in early summer, followed by grazing or mowing of the aftermath;

— Cyclic mowing (once every 5 to 10 years) or not mown at all since at least 5, and
up to 10 years;

— No management for at least 10 years;

5 — Transition from yearly to cyclic mowing.
2.2 Data set

Groundwater depth measurements were used to calculate a dynamic groundwater vari-
able, the mean groundwater depth (MGD) below surface [m]. Values of this variable,
together with the groundwater quality variables, were assigned to each grid cell by
10 spatial interpolation of measurement data over the entire area using block kriging (for
details, see Bio et al., 2002).
The spatially explicit variables were structured into a data set. The data set contains
N=519 measurement vectors x;=(X;1, Xj5, . . ., Xjp) consisting of the values of p=13
variables describing the abiotic environment:

15 — Groundwater dynamics: mean groundwater depth (continuous variable);
— Groundwater quality: pH, CI™, Ca®*, Fey, K*, Mg®*, NO;-N, NH;-N, H,PO,
and sof;. All these variables are continuous;
— Soil: soil type (silt/peat, categorical);

— Management: yearly mowing, cyclic mowing, no management, transition (cate-
20 gorical).

Seven different vegetation types cq, .. ., c, are considered. To each measurement

vector x; a unique vegetation type /; € {c4, ..., c,} is assigned. The data set will be

denoted as:

L=A(xq.h)..... (XN, In)} - (1)
3692

HESSD
4, 3687-3717, 2007

Modelling
groundwater-
dependent vegetation
patterns

J. Peters et al.

EG

c


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3687/2007/hessd-4-3687-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3687/2007/hessd-4-3687-2007-discussion.html
http://www.egu.eu

10

15

20

25

2.3 Independent evaluation data set

A spatially independent ecohydrological data set L,, was constructed for a similar
valley ecosystem, “Snoekengracht”. The monitoring scheme was largely the same
as in the Doode Bemde (Huybrechts and De Becker, 1999), and a grid-based data set
consisting of M=501 elements was constructed, which will be denoted as:

Loy =¥y, 1), .-, Ym. Im)} (2)

where /; is the vegetation type assigned to measurement vector y;. Most vegetation
types coincide with those found at Doode Bemde, except for Magnocaricion which was
not found at Snoekengracht (see Table 1).

3 Distribution model

The distribution model used in this study applies the random forest technique (Breiman,
2001). Random forest is an ensemble learning technique which generates many clas-
sification trees (Breiman et al., 1984) that are aggregated to compute a classification.
Each classification tree is grown using another bootstrap subset L; of the original data
set L and the nodes are split using the best split variable among a subset of m randomly
selected variables (Liaw and Wiener, 2002). The pseudo-code for growing a random
forest is given in Appendix A1. The number of trees (k) and the number of variables
used to split the nodes (m) are two user-defined parameters required to grow a ran-
dom forest. An unbiased estimate of the generalization error (the so called out-of-bag
error, oob error) is obtained during the construction of a random forest (Appendix A2).
Breiman (2001) proved that random forests produce a limiting value for the oob er-
ror. As the number of trees increases, the generalization error always converges. The
number of trees (k) needs to be set sufficiently high to allow for this convergence. The
oob error can be used to optimize the other user-defined parameter m, in order to get a
minimal random forest error (Peters et al., 2007). The model outcome is an ensemble
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of k classification trees which are aggregated based on majority votes to compute the
final classification. Since every classification tree votes for a certain vegetation type
c; based on the measurement vector x; of grid cell /, the probability of occurrence
of vegetation type c; is given by P(c/-)=NCj/k, where ch is the number of trees vot-
ing for vegetation type c;, and k the total number of trees. The highest probability of
occurrence (P(c;)max) determines the predicted vegetation type c;.

Additionally, the random forest algorithm can estimate variable importances (Ap-
pendix A3), i.e. variables can be ranked according to their importance in determining
vegetation distributions at the study site.

4 Modelling vegetation distributions
4.1 Model construction and results

At first instance the data set L was randomly split into 3 data subsets for 3-fold cross-
validation. The model was constructed using the random forest program provided by
Breiman and Cutler (2005). User-defined parameters m, the number of randomly se-
lected variables to split the nodes, and k, the number of trees within the random forest,
where optimized using the oob error, and suitable parameter values were m=3 and
k=1000. The results include an ensemble of k=1000 predictions, one made by each
classifier, which are aggregated based on majority votes into a final classification. A
confusion matrix summarizing the final classification is given in Table 3, and results are
shown in Fig. 6a.

4.2 Model evaluation
4.2.1 Classification accuracy

Out of the 519 grid cells included in the study, the model classified 395 (76.1%) cor-
rectly, and 124 (23.9%) incorrectly (Table 3). A k (Cohen, 1960) value of 0.716 was cal-
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culated, indicating a substantial agreement between observations and predictions. A
threshold-independent evaluation using receiver operating characteristic (ROC) graphs
was performed (Hosmer and Lemeshow, 2000). ROC graphs are useful for visualizing
classifier performances (Fawcett, 2006). ROC graphs are two-dimensional graphs in
which the true possitive rate, tp, is plotted on the y-axis, and the false positive rate, fp,
on the x-axis, where

_ positives correctly classified
h total positives

3)

b = negatives incorrectly classified
p= total negatives '

(4)

The area under the ROC curve, abbreviated AUC, is a scalar value between 0 and 1
representing the classifier performance (Fawcett, 2006). Since random guessing pro-
duces a diagonal line between (0,0) and (1,1) in ROC space, with an AUC value of 0.5,
a classifier with a higher AUC value than 0.5 does better than random guessing. For
multi-class ROC graphs, which should be applied here since 7 vegetation types are
considered, a methodology described in Fawcett (2006) is used. For each class a dif-
ferent ROC curve is produced, with ROC curve j plotting the classification performance
using vegetation class ¢, as positive and all other classes as negative. For each ROC
curve, the AUC can be calculated and averaged over the different classes using class
weights based on class prevalences in the test data (Provost and Domingos, 2001):

AUC,o = » AUC(c))- p(c)) (5)
cjeC

where AUC(c)) is the area under the class reference ROC curve for ¢;, and p(c;) a
weighing factor. Weighing factors are obtained from Table 1. Figure 5 visualizes the
ROC curves for each vegetation type. The AUC,, value equals 0.96 and the random
forest distribution model is concluded to perform well.
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4.2.2 Spatially explicit evaluation

For each grid cell, the ensemble of k=1000 classification results is aggregated by cal-
culating probabilities of occurrence P(c;) for all j vegetation types of which the vegeta-
tion type with the highest P(c;) value (P(c;)max) is the predicted one. As seen in Fig. 4
this decision rule leads to an increasing number of correct classifications with increas-
ing P(c;)max Values. Indeed, 252 elements are correctly classified with a probability
higher than 0.7, whereas only 2 elements are correctly classified with a probability
lower than 0.3. 50% of the correctly classified elements are based on probabilities
>0.78. The incorrect classifications show a maximum in the [0.4,0.5[ interval, with 1
element incorrectly classified with a probability lower than 0.3, and 28 elements in-
correctly classified with probabilities higher than 0.7. 50% of the incorrectly classified
elements are based on probabilities >0.55.

Figure 6b shows the spatial distribution of P(c)max Values at the study site in gradu-
ated colours. Correctly classified grid cells with high P(c;)max values are situated within
the central areas of homogeneous vegetation clusters, and P(c;)max values tend to de-
crease toward the boundaries of these areas (see also Fig. 6a). Incorrectly classified
grid cell are mainly found where two adjacent vegetation types meet, and are based
on low P(c;)max Values at the central depression and the north-eastern side of the
study site. The vegetation types found in these areas are Carici elongetae - Alnetum
glutinosae, Phragmitetalia, Magnocaricion with Phragmites and Magnocaricion. A Jac-
card similarity matrix was constructed for the boundary grid cells only (Table 4). The
JS values in Table 4 express averaged resemblances in species composition of each
boundary grid cell with its 8 neighboring grid cells. Boundary grid cells of Phragmite-
talia, Magnocaricion with Phragmites and Magnocaricion can be concluded to share
a large proportion of their species with JS values higher than 0.5. This is reflected in
the modelling results, P(c;)nax Values for these grid cells are generally low because
comparable numbers of the k=1000 classifiers classify these grid cells as Phragmite-
talia, Magnocaricion with Phragmites and Magnocaricion. Another conclusion should
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be drawn for isolated grid cells and small isolated vegetation clusters surrounded by
another vegetation type (e.g. as occurs along the western border of the study area,
see Fig. 6a). These grid cells are frequently incorrectly classified with high P(¢;)nax
values, and are the weak point of the random forest distribution model. The worse per-
formance of the model on boundary grid cells can also be seen in Fig. 5, where ROC
curves of classification results computed for boundary grid cells only are lower than
those computed for the entire data set. The corresponding AUC,, value for model
performances in boundary areas equaled 0.92, while being 0.96 for the entire study
area.

4.2.3 Performance on independent test data

The use of independent test data allows us to assess the model generalization abilities.
Edwards et al. (2006) pointed out that cross-validated model accuracies are frequently
different from accuracies assessed with truly independent data. It is easy to conclude
that the random forest vegetation distribution model, which was trained on the data set
L did not classify data set L, satisfactory. From the 501 elements included in L, only
99 elements were classified correctly (19.8%). This can be explained by the niche con-
cept (Hutchinson, 1957). The fundamental niche of a plant species, and by extension
a vegetation type, is defined as an n-dimensional hypervolume (Hutchinson, 1957) in
which every point corresponds to a state of the environment which would permit the
species to exist and reproduce. Due to interspecific competition species generally oc-
cupy only an elementary part of this volume, the realized niche. The niches realized by
each of the vegetation types found at the Doode Bemde differ from those realised by
the same vegetation types at Snoekengracht. Although similar results were observed
for all vegetation types, the example of Calthion palustris is given in Fig. 7. Since 13
environmental variables are used in this study, a principle component analysis was per-
formed to reduce dimensions and make results visible. Fig. 7 graphs the component
scores of grid cells where Calthion palustris was observed on the 2 principle compo-
nent axes (cumulatively explaining 70% of variance). Although partly intersecting, two
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different realized niches can be distinguished. Obviously, a random forest distibution
model that is trained on the vegetation distributions at the Doode Bemde and which
uses explicit environmental thresholds to compute a classification, cannot perform well
on such an independent test data set of an apparantely similar ecosystem.

5 Reduction of model complexity

The random forest algorithm includes a procedure to estimate the importance of the
independent variables (Appendix A3). Applying this procedure on data set L results
in a ranking of all 13 variables according to importance (Fig. 8a). The most important
variable is mean groundwater depth. This means that, according to this classification
technique, the spatial differences in mean groundwater depths at the Doode Bemde are
determinative for the vegetation distributions at the study site. Based on this variable
ranking, 13 random forest distribution models were constructed, each on a data set with
reduced complexity, i.e. each based on a different number of variables by eliminating
the variables in order of importance. Results are summarized in terms of the oob
error, and plotted in Fig. 8b. A stable oob error value was found for the models with
complexities between 4 and 13 variables. The models constructed on the 3, 2 and 1
most important variables showed a significant increase in oob error.

Based on this result, a simplification of the ecohydrological monitoring scheme for
distribution modelling is preliminarily assessed. Since the random forest performances
were similar when all 13 or just a part (>3) of these variables were included, there
seems no need to describe the environmental conditions of the study area by that
many variables. Therefore, a simplification of monitoring efforts can be made based on
various criteria such as relevance and measurement costs. For similar alluvial ecosys-
tems with groundwater dependent vegetations, the inclusion of groundwater depth to-
gether with some — easily measurable — groundwater quality variables such as pH,
NO,-N, NHZ—N, and management as environmental variables on which the vegeta-
tion distribution modelling is based, is proposed. The independent test data set L, was
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redesigned only to include 5 variables: mean groundwater depth, pH, NO;—N, NHZ—N,
and management. 3-fold cross-validation resulted in an overall accuracy of 72.5% (363
grid cells correctly classified, 138 incorrectly classified), and a AUC,, value of 0.94
was computed. The reduced random forest distribution model did perform satisfactorily,
even when compared to the 3-fold cross-validated results of the random forest model
constructed on the entire data set L, (accuracy = 76.6%, AUC,, = 0.96).

6 Conclusions

Vegetation patterns arise from the interplay between intraspecific and interspecific bi-
otic interactions and from different abiotic constraints and interacting driving forces and
distributions (Schroder, 2006). In this study, we constructed a vegetation distribution
model based on spatially distributed environmental variables which were linked with
the occurrence of a certain vegetation type. Biotic interactions were only included in-
directly, i.e. their effect was included through the observed vegetation distribution pat-
tern, not directly as independent variables underlaying the vegetation distribution. As
far as classification accuracy of the random forest is concerned, results were satisfac-
tory (AUC,ui, = 0.96). Model errors were located in boundary areas (AUCyndary area
= 0.92) between adjacent vegetation types. A proportion of these errors could be
attributed to high similarities between neighboring grid cells. These incorrect predic-
tions were generally based on low probabilities of occurrence of several similar veg-
etation types. Furthermore, the random forest distribution model cannot be applied
beyond the local conditions upon which it was constructed, because realized niches of
species/vegetation types do seldom coincide, even between apparently similar sites.
This restricts the model’s applicability. In order to make it operational on a larger scale
many data would be needed, ranging over the entire ecological amplitude of the mod-
elled attributes. Finally, gradual reductions in model complexity were analysed. Based
on these results, a significant reduction of the ecohydrological monitoring scheme could
be proposed for a similar groundwater-dependent ecosystem. The random forest dis-
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tribution model made a reasonably accurate classification (AUC,;, = 0.94) when con-
structed on spatially distributed measurement of five easily measured environmental HESSD

variables only.
4, 3687-3717, 2007

Appendix A Modelling
groundwater-
Random forest dependent vegetation
patterns

A1 Growing a random forest

. . P J. Pet t al.
The algorithm for growing a random forest of k classification trees goes as follows: elerseta

(i) for i=11to k do:

1. draw a bootstrap subset X; containing approximately 2/3 of the elements of
the original data set X;

2. use X, to grow an unpruned classification tree to the maximum depth, with the
following modification compared to standard classification tree building: at
each node, rather than choosing the best split among all variables, randomly
select m variables and choose the best split among these variables;

(if) predict new data according to the majority vote of the ensemble of k trees.
A2 Out-of-bag error estimate

An unbiased estimate of the generalization error is obtained during the construction of
a random forest by:

(i) for i=1to k do:

1. each tree is constructed using a different bootstrap sample X; from the orig-
inal data set X. X; consists of about 2/3 of the elements of the original data
3700 EG
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set. The elements not included in X;, called out-of-bag elements, are not
used in the construction of the /—th tree;

2. these out-of-bag elements are classified by the finalized /—th tree.

(ii) At the end of the run, on average each element of the original data set X is
out-of-bag in one-third of the k tree constructing iterations. Or, each element of
the original data set is classified by one-third of the k trees. The proportion of
misclassifications [%] over all out-of-bag elements is called the out-of-bag error.

A3 Variable importance

The random forest algorithm can estimate the importance of each variable by using the
variable importance measure. Defining variable importances is done by looking at how
much the oob error increases when oob data are permuted for one variable while left
unchanged for all others. The calculation procedure goes as follows:

(i) For i=1to k do (grow a random forest consisting of k classification trees):

(1) apply tree i to the n oob elements and count the number of correct classifi-
cations over the n oob elements (C; ,nouched):

(2) for j=1to p (with p the total number of variables) do:

(a) take the n untouched oob elements;
(b) randomly permute the values of variable j in the n oob elements;
(c) apply tree / to all the j permuted oob elements;
(d) count the number of correct classifications (C; ;_permuted);
)

(e) subtract the number of correct classifications of the variable-j-permuted
oob elements from the number of correct classifications of the un-
touched oob elements and divide by the number of oob elements

(AC/‘,j =(C; untouched _Ci,j—permuted)/n);
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The results from these iterations are p (number of variables, j=1 to p) groups of k
(number of trees, /=1 to k) AC, ; values. Since trees are independent, correlations
among the AC, ; values within the p groups are generally low. Finally:

(i) For each of the j=1 to p groups, the mean AC; ; over all / = 1 to k trees is cal-

culated (AC;= S, C; ;/k). The value AC; x 100 is referred to as the “mean im-
portance score” of variable j. The value is positive when C; ,niouched™>C j—permuted
and negative when C; ,niouched<Cj j—permuted- M€an importance scores have high
values when the classification error increases by permuting the values of variable

p.

(iii) Since correlations of the AC; ; scores are generally low within the j=1 to p groups,
standard errors can be calculated for each of the j groups of /=110 k AC; ; scores.

Divide AC/- by the standard error to obtain a z—score for variable j, and assign a
significance level assuming normality.
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Table 1. Summary of the vegetation types: abbreviation, name, short description and area. HESSD

4, 3687-3717, 2007

Abbr. Name Short description area [ha]
(number of grid cells)
oB SN Modelling
Ar Arrhenatherion High vyield potential pasture. 2.80(70) 0.83(83) gr°undwater.

Characteristic species include

Arrhenatherum elatius (L.) J. & dependent vegetation

C.Presl, Anthriscus silvestris (L.) patterns
Hoffm. and Trifolium dubium
Sibth.. J. Peters et al.

Cp Calthion palustris ~ Species—rich mesotrophic fen 4.24 (106) 0.93 (93)
meadow dominated by Caltha
palustris L., Lychnis flos—cuculi
L., and many Carex species.
Ce Carici elongetae  Mesotrophic forest type with 1.20 (30) 1.21 (121)
— Alnetum gluti- dominance of Alnus glutinosa
nosae (L.) Gaertn. and a herblayer with
Carex elongata L., Carex acuti-
formis Ehrh. and Lycopus eu-

ropaeus L..
Fi Filipendulion Tall herb fen with Filipendula ul- 4.16 (104) 1.07 (107)
maria (L.) Maxim., Alopecurus
pratensis L., Cirsium oleraceum
(L.) Scop. and Heracleum spho-
ndylium L..
Ph Phragmitetalia Highly fertile reedswamps dom- 2.12(53)  0.19 (19)
inated by Phragmites australis
(Cav.) Steud..
MP Magnocaricion Magnocaricion vegetation with  3.72 (93)  0.78 (78)
with Phragmites ~ Phragmites  australis  (Cav.)

Steud..
Ma Magnocaricion Tall sedge swamp with Carex 2.52 (63) -

acuta L., Carex acutiformis
Ehrh., Scuttelaria galericulata L.
and Phalaris arundinacea L..

it

DB = Doode Bemde; SN = Snoekengracht
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Table 2. Jaccard index of similarity between the vegetation types in the Doode Bemde.

HESSD
4, 3687-3717, 2007

Ar Cp Ce Fi Ph MP Ma
Ar 0.40
Cp 0.18 0.37
Ce 0.11 0.17 0.46
Fi 024 021 020 0.39
Ph  0.09 0.19 0.35 0.22 0.55
MP 0.10 0.19 0.30 0.23 0.44 0.51
Ma 0.11 024 0.30 0.33 0.38 0.42 0.54
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Table 3. Confusion matrix of the classification made by the random forest distribution model.
Predicted vegetation types are compared with the observations at the Doode Bemde.

HESSD
4, 3687-3717, 2007
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Observed

Ar Cp Ce Fi Ph MP Ma

Ar 55 4 0 4 0 0 0
- Cp 6 8 0 7 0 5 4
% Ce 0 1 19 O 1 4 4
5 Fi 9 2 0O 82 1 0 7
S P 0 2 7 1 45 4 2
MP 0O 2 3 1 4 68 9
Ma O 6 1 4 2 12 37

3708

it

EG

(e


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3687/2007/hessd-4-3687-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3687/2007/hessd-4-3687-2007-discussion.html
http://www.egu.eu

Table 4. Jaccard index of similarity for boundary grid cells between two vegetation types at the

Doode Bemde. Non-adjacent vegetation types are indicated by —.

HESSD
4, 3687-3717, 2007
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Ar Cp Ce Fi Ph MP Ma
Ar 059
Cp 0.38 0.60
Ce - 045 0.66
Fi 0.34 0.21 - 054
Ph - 0.18 052 027 0.67
MP - 030 036 0.19 0.57 0.65
Ma - 034 039 057 059 053 0.66
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Fig. 1. Conceptual model illustrating the relationship between hydrology, the physicochemi-
cal environment and vegetation at the local scale. Legend: full arrows indicate direct effects,
broken arrows vegetation feedbacks, and rounded squares and bent arrows indicate exoge-
nous disturbances. Figure adapted from (Franklin, 1995; Baird and Wilby, 1999; Mitsch and

Gosselink, 2000).
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0 100 200 Meters
]

LEGEND

Observations

[l Arrhenaterion

[ Calthion palustris

[l Carici elongetae - Alnetum glutinosae

[ Fili

[ Phrag: ia

[__] Magnocaricion with Phragmites
[ Magnocaricion

Fig. 2. The Doode Bemde is situated in the valley of the river Dijle. A detailed overview of
the topography and the vegetation distribution at the site are shown. The positions of 5 (A-E)
piezometers located along a topographical transect are symbolized by o.
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-1.5

groundwater depth [m]

-2 1 1
01/01/91 01/01/92 01/01/93 31/12/93
time

(b)

_2 1 1 1 1
0 20 40 60 80 100

probability to exceed groundwater depths [%]

groundwater depth [m]

Fig. 3. (a) Time series of the groundwater depth, as monitored by piezometers A—E along a
topographic transect (see Fig. 2). (b) Hydrological duration lines expressing the probability that
measured groundwater depths are exceeded. The line colours correspond to the vegetation
types wherein these piezometers were installed (see Fig. 2).
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[0,0.1] [0.1,0.2[ [0.2,0.3[ [0.3,0.4] [0.4,0.5[ [0.5,0.6] [0.6,0.7[ [0.7,0.8] [0.8,0.9] [0.9,1]
probability class

Fig. 4. Probability distribution of correct and incorrect classified grid cells of the Doode Bemde
(N=519).
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true positive rate

Arrhenaterion
Calthion palustris
Carici elongetae — Alnetum glutinosae,

0.2}

Filipendulion 7
i Phragmitetalia
0.1F Magnocaricion with Phragmites 1
d Magnocaricion
0 ~ 1 1 1 1
0 0.2 0.4 0.6 0.8 1

false positive rate

Fig. 5. Reciever operating characteristic (ROC) curves visualizing the classification perfor-
mances of the 3-fold cross-validated random forest distribution model for the 7 vegetation types
(full curves). The AUC,, equals 0.96. Model performances for boundary cells only are sum-
marized by the dashed ROC curves, yielding an AUC,, value of 0.92.
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Fig. 6. (a) Observed vegetation types overlaid by the classification made by the random forest
distribution model. (b) Modelled probabilities (P(c;)max) 0N Which the classification is based.
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Fig. 7. Conceptual representation of realised niches of Calthion palustris at the Doode Beemde
and Snoekengracht. The fundamental niche of Calthion palustris ranges over all environmental
states which would permit to Calthion palustris to exist indefinitely (Hutchinson, 1957).
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Fig. 8. (a) All variables ranked according to their importance as calculated with the variable im-
portance measure (Appendix A3). M stands for management regime, S represents the variable
soil type, and MGD the mean groundwater depth. (b) Oob error of random forest distribution
models constructed on data sets with reduced complexity. The model containing only the most
important variable (MGD) has an oob error of 65.51%. The oob error decreases gradually when
more variables are included.
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